Physics Lesson 1 Measurements, Units, Application of Vectors

Fundamental Units of Physics

Quantity	Measured in	Prefix	Value	
Mass		Tera-	x 10 ¹²	
Time		Giga-		
Length		Mega-	x 10 ⁶	
Amount		Kilo-		
Temperature		Deci-		
Charge	Coulombs	Centi-		
		Milli-	x 10 ⁻³	
(Note: The SI u	unit for charge is	Micro-		
Coulombs	_ even though	Nano-		
for problem	n solvina)	Pico-		
	l connig,	Femto-		
			2	

Derived Units, Unit Analysis of Unfamiliar Quantities 1. Express the Newton in SI units. Answer: since F = ma, 2. The equation for gravitational force is F = GM₁M₂/r² where G = Newton's gravitational constant, M₁ and M₂ being masses and r being the separation between two bodies. Use it to deduce the SI Unit expression for G. Answer: equating units on both sides of the equation:

Table of Some Physical Quantities

Quantity	Symbol	Equation	SI Units
Speed	v		
Acceleration	а		
Force	F		1 N = 1
Energy	KE, PE, etc	Work done = force x distance	
Power	Р		
Pressure	Р		1 Pa = 1
Spring constant	k		
Voltage			1 V = 1
Current			1 A = 1
Electric resistance			
Specific Heat capacity	С		
Electric field	E	Force = Electric field x charge	
Magnetic Field	В	Force = current x length x Magnetic field	

Unit Conversion Exercises

- 1 The photon is the carrier of energy of a beam of light. The equation that governs energy per photon is E = hf where E = photon energy and f is frequency of the beam of light. Use this to deduce the SI unit expression for h (which is called the Planck's constant).
- 2 The equation that governs drag force on a sphere falling in a fluid is $F_{drag} = 6\pi\eta rv$ where $\eta = viscosity$, r = radius of a sphere and v = velocity of sphere. Use this to deduce the SI unit expression for viscosity.

Measurements

Decimal places vs. sig figs

e.g. The number 0.03070 has <u>decimal places and</u> significant figures.

- Absolute error, relative error and percentage error: The absolute error for an analogue instrument is half the smallest division on the instrument. The absolute error for a digital instrument is the smallest difference displayable on the instrument.

Relative (or percentage) error =

e.g. A ruler measures the length of a pencil to be 4.0 cm correct to the nearest tenth of a cm. The absolute error is _____ cm and the % error is

Decimals and Sig-figs in Science

• Adding or subtracting: Record the final answer with the same number of _____as the least precise figure:

e.g. 103.55 °C – 97.75 °C =

e.g. 4.3 x 10⁻³ grams + 1.7 x 10⁻² grams =

• Multiplying or dividing: record the final answer with the same number of ______as the least precise figure:

e.g. 6.6 V / 0.140 A =

e.g. 1.36×10^3 N x 0.75 m =

A 1.20 kg sample of water is heated from 49.5 °C to 54.8 °C. The specific heat capacity of water is 4.18 J g⁻¹ °C⁻¹. Calculate the heat energy required using the equation Q =

Error Propagation in Science

Adding and subtract	ting figures with errors:		
Final value = sum or	r difference of the two f	igures	
Final error = sum of			
e.g. (103.55 ± 0.01)	°C - (97.75 ± 0.01) °C =		
 Multiplying and divi 	iding figures with errors	8:	
Final value = produc Final % error = sum	ct or quotient of the two	o figures	
e.g. (6.6 ± 0.1) V / (0	0.140 ± 0.001) A		
(convert to relative	or % errors) = (6.6 ±	%) V / (0.140 ±	%)A
	= 47.14	±Ω	
(convert back to abs	s. error) = 47 ±	Ω	

Beware of premature rounding problems

Precision	and Accura	ЭСУ		
 An accurate measurement is one that is A precise measurement has a very smal considered to be acceptably precise. 	s in agreement with reality. Il percentage error. Generally,	a 1% relative error is		
Example:				
A student used a light gate to measure 0.931, 0.970, 0.977 and 0.994 seconds, value of gravitational acceleration using	the time for a ball to fall 5.0 \pm respectively. The average tim the equation s = 0.5gt ² .	0.1 meters to be 0.808, e is used to estimate the		
The calculated value of g using the average	time is	m s ⁻² .		
The uncertainty of g according to this data s	set is (max – min) / 2 =	m s ⁻² .		
Each individual measurement is	because			
The entire set of data is	because			
Overall, the experiment is	because		-	
		9	9	

Analysing Straight-line Graphs

Delation	Equation	Plot what against what?		Gradient	Y-intercept
Relation		y x			
Oscillation period of a metal spring, different masses	$T = 2\pi \sqrt{\frac{m}{k}}$	Т	\sqrt{m}		
Description period of a metal spring, different masses attached, to measure the spring constant (k)		T ²	m		
		log T	log m		
Oscillation period of pendula, varying pendulum lengths, in order to measure g	$T = 2\pi \sqrt{\frac{l}{g}}$	T ²			
acceleration of fixed-mass object using varying driving force under unknown constant friction	$\alpha = \frac{F - F_r}{m}$	а	F		
Available voltage (V) of a battery when operated at different currents, with unknown constant emf (E) and unknown, constant internal battery resistance	V = E - Ir				
Relation between pressure and volume of a constant amount of ideal gas at known constant T, in order to estimate the ideal gas constant R	PV = nRT				
Radioactive decay radioactivity at different times, in order to estimate the half-life of a sample	$A = A_a(0.5)^{\frac{v}{half life}}$				

Vector

• A vector is a quantity that has both a magnitude and direction associated with it.

Examples of scalars

Distance Speed Gaseous pressure Energy Charge Time Temperature Amount (in moles)

Examples of vectors

Displacement (difference in position) Velocity Acceleration Force Momentum Field

Vector Calculations in 1 Dimension

2.

- Designate one direction as "forward" or positive direction.
- Be aware of signs
- Draw diagrams if necessary
- A 10-kg rock is falling in air.
 a) Calculate its weight if gravity is 9.8 m s⁻².

b) Calculate the resultant force, or net force, given that drag = 75 N and upthrust = 3 N. A cargo boat is sailing east at 15 m/s. A conveyor belt on the boat is transporting parcels at a belt speed of 2 m/s to the back (west) of the boat. A cat is trying to run east with a speed of 6 m/s east on the belt, relative to the belt. Let east = positive.

a) Find the velocity of the cat relative to a parcel

- b) Find the velocity of the cat relative to the sea.c) Find the velocity of the cat relative to the floor of the boat.
- d) Find the velocity of a parcel relative to the cat.

